Lecture 7

Rules of Inferences (contd.), Introduction to Proofs

More Examples: Proving Validity of Arguments

Example: Prove that the following argument is valid.

Premises: $\begin{cases} (p \land q) \lor r \\ r \to s \end{cases}$

Solution:

Step

1. $(p \land q) \lor r$ 2. $r \lor (p \land q)$ 4. $r \lor p$ 5. $r \rightarrow s$ 6. $\neg r \lor s$

7. $p \lor s$

Reason

Premise

Allowed to use known laws. $\therefore p \to q \equiv \neg p \lor q \checkmark$

Commutative law on (1) 🐢 3. $(r \lor p) \land (r \lor q)$ Distributive law on (2) Simplification of (3) Premise Resolution on (4) and (6)

Conclusion: $p \lor s$

More Examples: Proving Validity of Arguments

Example: Prove that the following argument is valid.

Premises: Attendance. Darsh did not have good attendance in the course. Darsh passed the course.

Conclusion: Darsh scored well in the course.

Solution: Set the domain as "students in the course".

P(x) = x passed the course.

S(x) = x scored well in the course.

A(x) = x had good attendance in the course.

Students who passed the course either scored well or had good

continue...

More Examples: Proving Validity of Arguments

Argument:

Premises: $\forall x(P(x) \rightarrow S(x) \lor A(x))$ $\neg A(Darsh)$ P(Darsh)

Proving Validity:

Steps

- 1. $\forall x(P(x) \rightarrow S(x) \lor A(x))$
- 2. $P(Darsh) \rightarrow S(Darsh) \lor A(Darsh)$
- 3. P(Darsh)
- 4. $S(Darsh) \lor A(Darsh)$
- 5. $\neg A(Darsh)$
- 6. S(Darsh)

Conclusion: *S*(*Darsh*)

Reason

Premise

Universal Instantiation using (1) Premise Modus Ponens using (2) and (3) Premise Disjunctive Syllogism of (4) and (5)

Introduction to Proofs

What's a proof?

In the broadest sense, **proof** is a method of establishing **truth**.

Truth can be established in more than one ways.

- In experimental sciences the truth is guessed and the hypothesis is confirmed or refuted by experiments.
- In history truth is obtained through archaeology, multiple historical texts, etc.
- In day-to-day life the truth is established by quoting scriptures, books, judiciary orders, etc.

What's a mathematical proof?

demonstrates the truth of a mathematical statement.

A mathematical proof is a sequence of statements, where each statement is either "logically" supported" by the previous ones or is an already established truth or an axiom, that

Introduction to Proofs

Mathematical proofs are of two types:

Formal Proofs

- 1. Axioms are properly stated.
- 2. Rules of inferences are explicitly stated.
- 3. Arranged as a sequence of statements.
- 4. One rule of inference is applied at every step.
- 5. Existing true statements/facts are not usually used.
- 6. Good for machines.

We will focus on informal proofs rather than formal proofs.

Informal Proofs

- 1. Axioms are sometimes skipped.
- 2. Rules of inferences are not explicitly stated.
- 3. Written like a mathematical essay.
- 4. Multiple rules of inferences can be applied in one step.
- 5. Existing true statements/facts are used.

6. Good for humans.

ated.